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The condition of positive normal pressures must hold for all solutions in the kinetic 
theory, but is violated by the Navier-Stokes equations for sufficiently high distortions. 
A dimensionless measure of this discrepancy is furnished by the tension number. 
In order for all pressures to be positive, it is necessary and sufficient that the tension 
number be less than 1. If this condition is violated, the normal-stress effects of the 
kinetic and Navier-Stokes theories are of opposite sign. 
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I t  is well known  tha t  according  to the kinetic theory  o f  mona tomic ,  modera te ly  
rarefied gases, the Nav ie r -S tokes  const i tut ive equat ion  is only  an approx imat ion .  
Whi le  var ious  arguments  have been pu t  fo rward  to this effect, they all rest on p ic tor ia l  
r emarks  or  on pure ly  formal  processes o f  approx ima t ion  to solut ions o f  the M a x w e l l -  
Bo l tzmann  equa t ion  which belong to a hypotheca ted  special class, the existence o f  
which remains  still a ma t t e r  o f  conjecture.  Even more  than  this, the arguments  l abo r  
under  confus ion o f  the sufficient with the necessary. Typical ly,  the au thor  presents  
some calcula t ion in tended to convince the reader  that  cer tain assumpt ions  in the 
kinetic  theory  reduce it to the Nav ie r -S tokes  theory,  whereupon  he proc la ims  tha t  
these assumpt ions  must  2 hold in order for  the Nav ie r -S tokes  theory  to fol low! 

This work was done with the partial support of a grant of the US National Science Foundation 
to the Johns Hopkins University. 

1 The Johns Hopkins University, Baltimore, Maryland. 
An exception is the work of Maxwell. m First, Maxwell makes no such converse claim. Second, 
from his Eqs. (121) and (75), a necessary and sufficient condition could be formulated, but it would 
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In  fact, a simple necessary cond i t ion  for  the Nav ie r -S tokes  theory  can be der ived 
by  r igorous ,  though  trivial ,  mathemat ics ,  directly f rom the definit ions and  wi thout  
use o f  the  Maxwe l l -Bo l t zmann  integrodifferential  equat ion,  let a lone o f  any  special  
process  o f  in tegra t ion  o f  it. The key to the a rgument  is that  while the older  studies 
always focused upon  the shear stress, mode rn  con t inuum mechanics  has  taught  us 
to  expect  that  depar tures  f rom classical predic t ions  manifes t  themselves first in 
normal-s t ress  effects (see, for  example,  Truesdel l  and  NollC*)). The crux o f  the a rgument  
is tha t  while  the definit ion o f  the pressure tensor  in the kinetic theory forces the n o r m a l  
pressure on  every element  o f  area  in every flow to be posi t ive 3 unless the mass  densi ty  
vanishes, the Nav ie r -S tokes  theory  makes  a tension result  on  elements  which are  
suffering sufficiently violent  dis tor t ion.  When  these two normal-s t ress  effects are  
contrary ,  the under lying theories cannot  square with each other.  

Indeed,  we know f rom the definitions ~4) tha t  the Nav ie r -S tokes  theory  can never  
fol low f rom the kinetic theory  except  subject  to the Stokes viscosity relat ion.  Thus,  
for  compar i son ,  we need consider  only  the case when the pressure tensor  P is given 
in terms o f  the stretching tensor  D as follows~: 

P = ( p  -[- ~ Tr  D ) I  - -  2 / ~ D  

= p l  - -  2/xD0 
(1) 

where Do is the devia tor  of  D, often called the d is tor t ion  tensor,  and  where p a n d / z ,  
the pressure and the shear viscosity, are posi t ive funct ions o f  densi ty and temperature .  5 
Hence,  

n �9 P n  = p - -  2/xn �9 Don (2) 

Therefore,  the no rma l  pressure on the e lement  no rma l  to n is posi t ive if  and  only i f  

2n �9 Don < p / t  ~ (3) 

be very complicated and would not have any obvious interpretation either in terms of the mean 
free path, etc., or in terms of measurable quantities. [These two equations are exact, but Eq. (121) 
is valid only for Maxwellian molecules.] Likewise, in the voluminous papers of Boltzmann I have 
found no claim that any particular condition of the gas is a necessary one for the theory of linear 
viscosity to hold. 

3 While I cannot find this conclusion in Chapman and Cowling, c3~ it follows immediately from 
Eq. (2) of Section 2.31. We must distinguish here between the true kinetic theory and the Chapman- 
Enskog iterates, the status of which has never been made precise except in very special cases. 
The condition of positive normal pressures holds for all exact solutions. If the Chapman-Enskog 
process converges to a particular exact solution, then this condition holds in the limit, but it 
certainly does not hold automatically at each finite stage. For example, while it does hold at the 
zeroth stage, which corresponds to Eulerian hydrodynamics, it does not hold automatically at 
the first stage, which corresponds to the Navier-Stokes theory. Presumably, the results at that 
stage are of value only insofar as they approximate properties of certain exact solutions. Hence 
arises the problem solved in the text, to which the preceding sentences of this footnote could serve 
as an alternative introduction. 

4 This tensor and the other kinematical apparatus used here are defined and described by Truesdell 
and Toupin, ~5~ for example. See Sections 82 and 83. 

5 In fact, p = knO, where n is the number density and 0 is the temperature, but we do not need this 
explicit formula until we come to the special case below [Eq. (10)]. 
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So as to ensure that this inequality holds for all n, we render the left-hand side a 
maximum by choosing n as a proper vector of  D O corresponding to the largest proper 
number. The proper numbers of  D are the principal stretchings di ,  and the corre- 
sponding proper numbers of  D O are d~ - -  (I/3) Tr D. I f  we order the di so that 
dl >~ d2/> d~, then the greatest proper number of  D O is one-third of  the sum of the 
two greatest orthogonal shearings, namely, �89 - -  da) -k (dl - -  d2)], both summands 
being nonnegative. For  an isochoric motion, and only for such, this greatest distortion 
reduces to dl ,  the greatest stretching. I f  we define the dimensionless tension 
number 2ge by 

~e  ~ (2/3)(2d, --  d~ --  d3)(tz/p) (4) 

then a necessary and sufficient condition that no element of  area be suffering positive 
tension is 3;e < 1. (Of course, it is impossible that a// elements suffer tension, since 
the mean pressure, f rom its definition, is positive. Thus, at least one principal stress is 
always a pressure, no matter  what be the flow.) 

As a corollary to the foregoing remarks, we see that the Navier-Stokes  consti- 
tutive equation cannot be consistent with the Maxwellian kinetic theory unless 

;ge < 1 (5) 

The tension number 3;e is defined in terms of  gross quantities alone, and thus 
may be used in continuum theories or kinetic theories at pleasure. Similar, but not 
identical, dimensionless parameters are used to estimate the error in cutting off 
constitutive equations after the linear terms. One such parameter  is the truncation 
number Xr, ~ defined as follows: 

3;r ~ [2(d~ z -? d~ ~ + aa2)]z/2 (tz/p) (6) 

It  can be shown that 
~we < (2/~/3) 3;r (7) 

where equality holds if and only if d~ = da = --(1/2) all. Thus, a small value of 2:r 
implies a small value o f~e ,  but the converse is not generally true. Indeed, in a uniform 
dilatation, ~e  = 0 always, but for given ix~p, the truncation number  ~;r is proportional 
to the rate of  expansion or contraction and thus may be arbitrarily large. 

In a plane isochoric flow, & = 0 and d3 = - -dl  ~< 0. In this case, the distinction 
between the truncation number and the tension number disappears: 2:e = ~r .  
To visualize the results, consider a simple shearing: u = Ky, v = 0, w = 0, where 
~c is the amount  of  shearing, assumed positive, so d 1 = �89 Then 

~ e  = ~ r  = w~/p =~ ~ (8) 
say. 

For  a gas of  Maxwellian molecules, a relaxation time ~- for the shear pressures 
in a gas grossly at rest exists and is given by ~ 

~- = iz/p (9) 

6 A number of this kind seems first to have been introduced by Truesde]l. ~ See Eq. (13). Cf. also 
Section 120 of TruesdeI1 ancl Notl. ~2~ 

7 See Eq. (130) of Maxwell. m 
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Thus, for a simple shearing o f  such a gas, 

~; = ~-  (10) 

which can be interpreted as being the amount of shearing, measured in units of the 
relaxation time. Thus, for this special case, the precise limit stated by Ineq. (5) asserts that 
the Navier-Stokes constitutive relation must fail before the shearing becomes as great 
as the relaxation rate. For the particular gas in question, both/z and p are proportional 
to the temperature, and, in fact, 

1/2~:/,( ~ ) (ll) 

where m is the mass o f  one molecule, G is the intermolecular force constant,  n is the 
number  density, and Az = 1.37 . . . .  For  a given Maxwellian gas, then, the condit ion (5) 
cannot  hold at any density if the shearing is too great, nor  can it hold for any shearing 
if the gas is too thin, but  this interpretation o f  condit ion (5) is no t  general, because the 
ratio of  l~/p in Eqs. (4) and (6) for non-Maxwell ian gases will be a funct ion o f  tem- 
perature as well as density. 

Since there is no  such thing as a Maxwellian gas in nature, numerical estimates 
are difficult. For  a Maxwellian gas, ~- = ~o(Po/P), where ~0 and P0 are a particular 
pair  of  values of  ~- and p. I f  for ~'0 we substitute the value of  ix/p for air at s tandard 
conditions, then the value o f  K which brings Ze to its critical value, 1, is given roughly 
by 

Klimi~ ~ �89 • 101~ sec-:  (12) 

Thus, for example, in a vacuum of  10 -6 atm, Klimit ---- 5000 sec-:. Heating the gas 
to 1000 ~ C cuts down the value of  ~llmi* by a factor  o f  about  3. 

As its name "t runcat ion number"  suggests, Z r  was introduced originally as a 
parameter  in heuristic arguments for  cutting off nonlinear terms in the constitutive 
equations in fluids. So far as I know, the only results o f  this kind rigorously derived 
up to now in the kinetic theory concern a Maxwellian gas which undergoes homo-  
thermal simple shearing, in which, as we have remarked, Z r  = Ze = Z. These 
results areS: 

1. While the differences o f  the principal normal  stresses are zero according to 
the Navier-Stokes  theory, in the kinetic theory the ratio o f  one o f  them to the mean 
pressure is 2Z ~ § O(% 4) for small 3;, while the ratio o f  the shear pressure to the 
mean pressure is 3; --  ~3;~ - -  0(3;5), the first term being the result o f  the Nav ie r -  
Stokes theory. (In fact, deviations f rom the Navier-Stokes  theory are noticeable 

8 See the paper of Truesdell/7) Sections 34, 36, and 51. The first conclusion agrees with Bumett's 
formulas, which are derived by the Chapman-Enskog process. Normal-stress effects have been 
known in the kinetic theory of gases since 1879, but they appeared in the literature of "theology" 
only much later. To simplify the statements in the text above, I have neglected entirely the oscillatory 
parts of the pressure system, since they are damped out as time goes on. For details, see Truesdell, m 
especially Eq. (33.2). 
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on a graph of ordinary size as soon as 3; > 0.1, and when 35 = 1, the Navier-Stokes 
shear pressure is almost twice as big as the true value, while the difference of normal 
pressures is far greater than the shear pressure, so the Navier-Stokes theory fails 
to give even a rough picture.) 

2. The Chapman-Enskog process converges if 3; < ~/2/3 and diverges if  
35 > ~/2/3. 

3. The heat flux is unstable if  3; > 3/~/2. 

Returning to the general condition (5), we repeat that it is satisfied by 
any expansion equal in all directions, no matter  what be the gas. This is not surprising, 
since Maxwell 9 showed that in such a flow, the kinetic gas behaves like an ideal 
perfect gas in adiabatic expansion, and the same thing is true for a Navier-Stokes 
gas that satisfies the Stokes relation. Therefore, not only is the necessary condition (5) 
satisfied, but also the two theories then do agree. 

Finally, we remark that no matter what be the molecular model, condition (5) can- 
not possibly hold as a general consequence of the kinetic theory for all flows. Indeed, 
the theory places no restriction on the molecular density function F at some given 
instant other than that it be summable. At some arbitrary initial time, then, the 
zeroth, first, and second moments of  F may be arty fields whatever. Since, then, the 
theory itself does not force these moments to satisfy any a priori inequality, in 
particular it does not force them to satisfy condition (5). Some solutions may satisfy it; 
indeed, we know that some do. Some solutions may fail to satisfy it initially, but 
come to satisfy it as time goes on. In the particular case of  homothermal  simple 
shearing of  a Maxwellian gas, all four quantities d l ,  dz, da, and i~/p are constants, 
so the flow either satisfies condition (5) at the outset or never satisfies it. 

Every statement about  the Navier-Stokes theory given here refers to the consti- 
tutive equation as it stands, not to the result of  substituting it in the field equations 
and integrating so as to solve an initial-value problem. This is a far more delicate 
matter.i~ 

A P P E N D I X  

In the text above I have used no terms and concepts except those of  Maxwell's 
formal kinetic theory and of  general continuum mechanics. These terms and concepts 
are clearly defined. In works on the dynamics of  rarefied gases, selected results f rom 
the former of  these theories are often combined rather mysteriously with verbal 
pictures drawn in the elementary kinetic theory and with special and often approximate 
formulas from the Navier-Stokes and Euler theories of  fluids. As a result, considerable 
literary latitude is left to the student, so it is dangerous to try to describe in the same 
terms anything really specific. For  example, the Knudsen number R is defined as 
the ratio of  the mean free path L to a "characteristic length" I of  the problem. The 

9 Equation (108) of Maxwell, m in the case when/3 = 1, this being the only case in which the theory 
given there is correct, as was remarked later by Poincar6. ~8) 

10 See Section 4.2 of Truesdell's paper, c7~ 
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mean flee path depends on the molecular distribution function F, which is always 
unknown for nontrivial problems. What  length is "characteristic" is also equivocal. 
While some authors determine such a length in terms of the speed of sound, that 
speed is not only a scalar field rather than a constant, but also is a presently unknown 
functional of the unknown molecular distribution function, so that use of  the 
Laplacian acoustic speed for it, while common, is merely formal, without any known 
physical relevance to the kinetic problem. 

After these precautionary explanations, we can relate the truncation number ~ r  
to the Knudsen number R used in much of the literature. Namely, if  we take for L the 
mean free path defined by the kinematic viscosity ix/p through the formula/x = �89 
if  we take the mean molecular speed ~ as being that for a gas in equilibrium at some 
pressure and density typical of  the flow, and if we take for ! the ratio of  the Laplacian 
speed of sound in an ideal gas at rest at the typical temperature to a typical value of 
[2(d12 + dz2+ daZ)] l/z, then we shall find that 35r ~ R, pretty nearly. In general, 
of  course, ~ r  is not a constant, but the value of a scalar field. (This identification shows 
that a large value of R does not necessarily invalidate the Navier-Stokes theory, 
since in an adiabatic expansion ~ may be as large as desired, yet the Maxwell, 
Navier-Stokes, and Euler theories agree precisely.) 

The results given here must not be taken as bearing upon the question of whether 
a rarefied gas may be regarded as a continuum, since Maxwell himself showed m 
that all solutions in his formal, mathematical kinetic theory represent the gas, no 
matter how rarefied it may be, as a continuum. (Much of the literature on the dynamics 
of  rarefied gases only compounds confusion by using the term "noncontinuum flow" 
to refer to anything asserted to be beyond the range of application of the Navier-  
Stokes theory.) 
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